95 research outputs found

    Psychiatric Illnesses as Disorders of Network Dynamics

    Get PDF
    This review provides a dynamical systems perspective on psychiatric symptoms and disease, and discusses its potential implications for diagnosis, prognosis, and treatment. After a brief introduction into the theory of dynamical systems, we will focus on the idea that cognitive and emotional functions are implemented in terms of dynamical systems phenomena in the brain, a common assumption in theoretical and computational neuroscience. Specific computational models, anchored in biophysics, for generating different types of network dynamics, and with a relation to psychiatric symptoms, will be briefly reviewed, as well as methodological approaches for reconstructing the system dynamics from observed time series (like fMRI or EEG recordings). We then attempt to outline how psychiatric phenomena, associated with schizophrenia, depression, PTSD, ADHD, phantom pain, and others, could be understood in dynamical systems terms. Most importantly, we will try to convey that the dynamical systems level may provide a central, hub-like level of convergence which unifies and links multiple biophysical and behavioral phenomena, in the sense that diverse biophysical changes can give rise to the same dynamical phenomena and, vice versa, similar changes in dynamics may yield different behavioral symptoms depending on the brain area where these changes manifest. If this assessment is correct, it may have profound implications for the diagnosis, prognosis, and treatment of psychiatric conditions, as it puts the focus on dynamics. We therefore argue that consideration of dynamics should play an important role in the choice and target of interventions

    Abnormal reward valuation and event-related connectivity in unmedicated major depressive disorder

    Get PDF
    BACKGROUND: Experience of emotion is closely linked to valuation. Mood can be viewed as a bias to experience positive or negative emotions and abnormally biased subjective reward valuation and cognitions are core characteristics of major depression. METHODS: Thirty-four unmedicated subjects with major depressive disorder and controls estimated the probability that fractal stimuli were associated with reward, based on passive observations, so they could subsequently choose the higher of either their estimated fractal value or an explicitly presented reward probability. Using model-based functional magnetic resonance imaging, we estimated each subject's internal value estimation, with psychophysiological interaction analysis used to examine event-related connectivity, testing hypotheses of abnormal reward valuation and cingulate connectivity in depression. RESULTS: Reward value encoding in the hippocampus and rostral anterior cingulate was abnormal in depression. In addition, abnormal decision-making in depression was associated with increased anterior mid-cingulate activity and a signal in this region encoded the difference between the values of the two options. This localised decision-making and its impairment to the anterior mid-cingulate cortex (aMCC) consistent with theories of cognitive control. Notably, subjects with depression had significantly decreased event-related connectivity between the aMCC and rostral cingulate regions during decision-making, implying impaired communication between the neural substrates of expected value estimation and decision-making in depression. CONCLUSIONS: Our findings support the theory that abnormal neural reward valuation plays a central role in major depressive disorder (MDD). To the extent that emotion reflects valuation, abnormal valuation could explain abnormal emotional experience in MDD, reflect a core pathophysiological process and be a target of treatment

    Components of Behavioral Activation Therapy for Depression Engage Specific Reinforcement Learning Mechanisms in a Pilot Study

    Get PDF
    Background: Behavioral activation is an evidence-based treatment for depression. Theoretical considerations suggest that treatment response depends on reinforcement learning mechanisms. However, which reinforcement learning mechanisms are engaged by and mediate the therapeutic effect of behavioral activation remains only partially understood, and there are no procedures to measure such mechanisms. Objective: To perform a pilot study to examine whether reinforcement learning processes measured through tasks or self-report are related to treatment response to behavioral activation. Method: The pilot study enrolled 13 outpatients (12 completers) with major depressive disorder, from July of 2018 through February of 2019, into a nine-week trial with BA. Psychiatric evaluations, decision-making tests and self-reported reward experience and anticipations were acquired before, during and after the treatment. Task and self-report data were analysed by using reinforcement-learning models. Inferred parameters were related to measures of depression severity through linear mixed effects models. Results: Treatment effects during different phases of the therapy were captured by specific decision-making processes in the task. During the weeks focusing on the active pursuit of reward, treatment effects were more pronounced amongst those individuals who showed an increase in Pavlovian appetitive influence. During the weeks focusing on the avoidance of punishments, treatment responses were more pronounced in those individuals who showed an increase in Pavlovian avoidance. Self-reported anticipation of reinforcement changed according to formal RL rules. Individual differences in the extent to which learning followed RL rules related to changes in anhedonia. Conclusions: In this pilot study both task-and self-report-derived measures of reinforcement learning captured individual differences in treatment response to behavioral activation. Appetitive and aversive Pavlovian reflexive processes appeared to be modulated by separate psychotherapeutic interventions, and the modulation strength covaried with response to specific interventions. Self-reported changes in reinforcement expectations are also related to treatment response

    No substantial change in the balance between model-free and model-based control via training on the two-step task

    Get PDF
    Human decisions can be habitual or goal-directed, also known as model-free (MF) or model-based (MB) control. Previous work suggests that the balance between the two decision systems is impaired in psychiatric disorders such as compulsion and addiction, via overreliance on MF control. However, little is known whether the balance can be altered through task training. Here, 20 healthy participants performed a well-established two-step task that differentiates MB from MF control, across five training sessions. We used computational modelling and functional near-infrared spectroscopy to assess changes in decision-making and brain hemodynamic over time. Mixed-effects modelling revealed overall no substantial changes in MF and MB behavior across training. Although our behavioral and brain findings show task-induced changes in learning rates, these parameters have no direct relation to either MF or MB control or the balance between the two systems, and thus do not support the assumption of training effects on MF or MB strategies. Our findings indicate that training on the two-step paradigm in its current form does not support a shift in the balance between MF and MB control. We discuss these results with respect to implications for restoring the balance between MF and MB control in psychiatric conditions

    Opportunities for emotion and mental health research in the resource-rationality framework

    Get PDF
    We discuss opportunities in applying the resource-rationality framework toward answering questions in emotion and mental health research. These opportunities rely on characterization of individual differences in cognitive strategies; an endeavor that may be at odds with the normative approach outlined in the target article. We consider ways individual differences might enter the framework and the translational opportunities offered by each

    A comparison of 'pruning' during multi-step planning in depressed and healthy individuals

    Get PDF
    BACKGROUND: Real-life decisions are often complex because they involve making sequential choices that constrain future options. We have previously shown that to render such multi-step decisions manageable, people 'prune' (i.e. selectively disregard) branches of decision trees that contain negative outcomes. We have theorized that sub-optimal pruning contributes to depression by promoting an oversampling of branches that result in unsavoury outcomes, which results in a negatively-biased valuation of the world. However, no study has tested this theory in depressed individuals. METHODS: Thirty unmedicated depressed and 31 healthy participants were administered a sequential reinforcement-based decision-making task to determine pruning behaviours, and completed measures of depression and anxiety. Computational, Bayesian and frequentist analyses examined group differences in task performance and relationships between pruning and depressive symptoms. RESULTS: Consistent with prior findings, participants robustly pruned branches of decision trees that began with large losses, regardless of the potential utility of those branches. However, there was no group difference in pruning behaviours. Further, there was no relationship between pruning and levels of depression/anxiety. CONCLUSIONS: We found no evidence that sub-optimal pruning is evident in depression. Future research could determine whether maladaptive pruning behaviours are observable in specific sub-groups of depressed patients (e.g. in treatment-resistant individuals), or whether misuse of other heuristics may contribute to depression

    Challenges and Solutions to the Measurement of Neurocognitive Mechanisms in Developmental Settings

    Get PDF
    Identifying early neurocognitive mechanisms that confer risk for mental health problems is one important avenue as we seek to develop successful early interventions. Currently, however, we have limited understanding of the neurocognitive mechanisms involved in shaping mental health trajectories from childhood through young adulthood, and this constrains our ability to develop effective clinical interventions. In particular, there is an urgent need to develop more sensitive, reliable, and scalable measures of individual differences for use in developmental settings. In this review, we outline methodological shortcomings that explain why widely used task-based measures of neurocognition currently tell us little about mental health risk. We discuss specific challenges that arise when studying neurocognitive mechanisms in developmental settings, and we share suggestions for overcoming them. We also propose a novel experimental approach—which we refer to as “cognitive microscopy”—that involves adaptive design optimization, temporally sensitive task administration, and multilevel modeling. This approach addresses some of the methodological shortcomings outlined above and provides measures of stability, variability, and developmental change in neurocognitive mechanisms within a multivariate framework

    Depression is associated with enhanced aversive Pavlovian control over instrumental behaviour.

    Get PDF
    The dynamic modulation of instrumental behaviour by conditioned Pavlovian cues is an important process in decision-making. Patients with major depressive disorder (MDD) are known to exhibit mood-congruent biases in information processing, which may occur due to Pavlovian influences, but this hypothesis has never been tested directly in an unmedicated sample. To address this we tested unmedicated MDD patients and healthy volunteers on a computerized Pavlovian-Instrumental Transfer (PIT) task designed to separately examine instrumental approach and withdrawal actions in the context of Pavlovian appetitive and aversive cues. This design allowed us to directly measure the degree to which Pavlovian cues influence instrumental responding. Depressed patients were profoundly influenced by aversive Pavlovian stimuli, to a significantly greater degree than healthy volunteers. This was the case for instrumental behaviour both in the approach condition (in which aversive Pavlovian cues inhibited 'go' responses), and in the withdrawal condition (in which aversive Pavlovian cues facilitated 'go' responses). Exaggerated aversive PIT provides a potential cognitive mechanism for biased emotion processing in major depression. This finding also has wider significance for the understanding of disrupted motivational processing in neuropsychiatric disorders.This work was supported by a Medical Research Council project grant (G0901275) and supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre

    From Computation to Clinic

    Get PDF
    Theory-driven and data-driven computational approaches to psychiatry have enormous potential for elucidating mechanism of disease and providing translational linkages between basic science findings and the clinic. These approaches have already demonstrated utility in providing clinically relevant understanding, primarily via back translation from clinic to computation, revealing how specific disorders or symptoms map onto specific computational processes. Nonetheless, forward translation, from computation to clinic, remains rare. In addition, consensus regarding specific barriers to forward translation—and on the best strategies to overcome these barriers—is limited. This perspective review brings together expert basic and computationally trained researchers and clinicians to 1) identify challenges specific to preclinical model systems and clinical translation of computational models of cognition and affect, and 2) discuss practical approaches to overcoming these challenges. In doing so, we highlight recent evidence for the ability of computational approaches to predict treatment responses in psychiatric disorders and discuss considerations for maximizing the clinical relevance of such models (e.g., via longitudinal testing) and the likelihood of stakeholder adoption (e.g., via cost-effectiveness analyses)

    The relationship between resting-state functional connectivity, antidepressant discontinuation and depression relapse

    Get PDF
    The risk of relapsing into depression after stopping antidepressants is high, but no established predictors exist. Resting-state functional magnetic resonance imaging (rsfMRI) measures may help predict relapse and identify the mechanisms by which relapses occur. rsfMRI data were acquired from healthy controls and from patients with remitted major depressive disorder on antidepressants. Patients were assessed a second time either before or after discontinuation of the antidepressant, and followed up for six months to assess relapse. A seed-based functional connectivity analysis was conducted focusing on the left subgenual anterior cingulate cortex and left posterior cingulate cortex. Seeds in the amygdala and dorsolateral prefrontal cortex were explored. 44 healthy controls (age: 33.8 (10.5), 73% female) and 84 patients (age: 34.23 (10.8), 80% female) were included in the analysis. 29 patients went on to relapse and 38 remained well. The seed-based analysis showed that discontinuation resulted in an increased functional connectivity between the right dorsolateral prefrontal cortex and the parietal cortex in non-relapsers. In an exploratory analysis, this functional connectivity predicted relapse risk with a balanced accuracy of 0.86. Further seed-based analyses, however, failed to reveal diferences in functional connectivity between patients and controls, between relapsers and non-relapsers before discontinuation and changes due to discontinuation independent of relapse. In conclusion, changes in the connectivity between the dorsolateral prefrontal cortex and the posterior default mode network were associated with and predictive of relapse after open-label antidepressant discontinuation. This fnding requires replication in a larger dataset
    • …
    corecore